

U.S. Army Research, Development & Engineering Command

Power Considerations for Micro-Autonomous Systems

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Brian C. Morgan, Ph.D.

Sensors & Electron Devices Directorate
U.S. Army Research Laboratory - Adelphi, MD

Brian.c.morgan25.civ@mail.mil

maintaining the data needed, and of including suggestions for reducing	nection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 30 JUL 2012		2. REPORT TYPE		3. DATES COVE 00-00-2012	ERED 2 to 00-00-2012
4. TITLE AND SUBTITLE		5a. CONTRACT	NUMBER		
Power Considerati	5b. GRANT NUMBER		MBER		
	5c. PROGRAM ELEMENT NUMBER				
6. AUTHOR(S)	5d. PROJECT NUMBER				
	5e. TASK NUMBER				
	5f. WORK UNIT NUMBER				
7. PERFORMING ORGANI U.S. Army Researc Directorate,2800 P		8. PERFORMING ORGANIZATION REPORT NUMBER			
9. SPONSORING/MONITO		10. SPONSOR/MONITOR'S ACRONYM(S)			
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited			
Grantees'/Contrac		FOSR Program on I	Mechanics of Mu	ltifunctional	
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 31	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline

- Army Needs & Niche
- Energy & Power Requirements
- Power Source Options
 - Bring energy with you
 - Get more on site
- Suggestions

Enduring Army Problems

- It is burdensome to carry
 & sustain everything
- Soldiers need to be more survivable
- There is never enough power
- We must operate in extreme environments
- 24/7 situational awareness of actions & intent is key to success

Micro-Autonomous Systems & Technology (MAST) CTA

Autonomy

Autonomous Robot Landscape ARL

MAST Goal

1g

1kg Size / Maturity 1000kg

Energy & Power Needs

Representative Platform: DFS/UMD MicroQuad

Power for mobility dominates over sensors & Comms; especially for aerial platforms (~10:1)

Non-Ragone Plot

Endurance (Hours)

Non-Ragone Plot

Option 1:

Bring what you need

COTS Rechargeables

4.7g LiPo battery

- Typically <\$10
- Available down to ~1g

COTS Rechargeable Batteries (<150Whr/kg)

COTS Primary Batteries

Plenty of energy (300-400 Whr/kg); Power Density limited (typically <100 W/kg)

U10004 - 15q~300 Whr/kg; 25 W/kg

UHE-ER14505 – 18g ~400 Whr/kg; 17 W/kg

COTS Rechargeable Batteries (<150 Whr/kg)

Primary Batteries

Emerging Batteries: Secondary used as a Primary

Typical Li-S problem: performance degrades with cycling → Commercial electronics care; MAST does not!

16g, 2V battery

- •Lithium-Sulfur: promising rechargeable technology
 - \rightarrow Up to 350 Wh/kg at 60 W/kg
 - → Project >200 Wh/kg @ 800 W/kg

Battery Research

COTS Rechargeable Batteries (<150 Whr/kg)

Primary Batteries

Thermo-Photovoltaics

Micro-Thermo-Photovoltaics ARL

GalnAsSb PV diodes

low-power MPPT

1D PhC emitter

micro channel

Silicon MEMs reactor

POC: Ivan Celanovic

Micro-Thermo-Photovoltaics

Component	Mass	Performance
Reactor & TPV Cells	5-8g	5-20%
Packaging	.5-1g	
Heat sink	3-5g	
Pumps , Power Elec	.5-1g	1W, 90%
Fuel to Tank Ratio	2:1 to 10:1	

Battery

COTS Rechargeable Batteries (<150 Whr/kg) **Micro TPV?**

Primary Batteries

Option 2:

Get more energy on site

Solar Photovoltaics

Solar Photovoltaics

Power Beaming

Pro's:*
>20% Net Efficiency
Scalable to kW & km
800 W/kg (receivers)

*Nugent & Kare, SPIE DSS, 2011

Con's:
Line of sight
Safety & reflections

Demonstrated 60W over 2m at 40-50% efficiency (~60cm coils)

*Kurs et al, Science, 2007

Suggestions

Use Less Power

Endurance (Hours)

Match Needs to Use

Endurance (Hours)

2

Embrace Cooperation

Environmental Complexity

Final Non-Ragone Plot

END

Non-Ragone Plot

Representative Platforms: DynaRoACH from UC Berkeley

Current dynaRoach 1.0 (24 grams)

•measured COT at cruise: 5 J/kg-m = 120 mW

cruise speed: 1 m/sec (flat ground)

total power for cruise: 600 mW

•range: 1.8 km

•max power density 10 W/kg (900 mW, 1000 sec)

(Hoover et al BioRob 2010)v

motor		
3 grams		
0.24/0.6		
W		

LiPo 2.5 grams 1100 J Structure 17 grams

1.5 grams 0.3 W

motor 1.7 grams 0.6/1.5 watts LiPo Battery 3.2 grams 1600 J proposed structure Goal: 3.6 grams

CPU 1.5 grams 50 mW

Hypothetical dynaRoach 2.0 (10 grams)

•COT at cruise: 2 J/kg-m = 40 mW

cruise speed: 2 m/sec (flat ground)

total power for cruise: 130 mW

•range: 25 km

•max power density 150 W/kg (3000 mW, 500 sec)

Micro-Thermo-Photovoltaics ARL

Representative Platforms: DynaRoACH from UC Berkeley

